STATE OF OREGON

INTEROFFICE MEMO

Department of Transportation
Transportation Development Division
Mill Creek Office Park
555 13th Street NE Suite 2
Salem, Oregon 97301-4178
(503) 986-4112 FAX (503) 986-4174

File Code:

Date: August 14, 2018

TO: \quad Tom Guevara, Region 3 Planning Dick Converse, RVCOG

FROM: Joseph Meek III PE, PTOE, Transportation Analyst Transportation Planning Analysis Unit

SUBJECT: UPDATED: Rogue River Technical Memorandum \#5 Future 2040 No-

This memo analyzes Rogue River's 2040 future-no-build conditions. This memorandum is updated from the March 2018 version with revised volume-capacity and level of service values. This will provide an overview of future transportation system operations and deficiencies. This analysis includes an evaluation of the study intersections. Analysis results will identify future transportation system needs for motorized and nonmotorized travel modes.

In the 2040 future conditions analysis, there were intersections exceeding volume-tocapacity (V/C) targets or standards, especially the 55 interchange and downtown area. There will be substantial queuing impacts and safety related issues on the I5 off-ramps and Depot Street starting at OR99 going through the interchange area and up to the Pine \& Main Street intersection. Heavier traffic conditions will make walking and bicycling less comfortable and transit potentially less reliable.

Background

The City of Rogue River is in Jackson County along I5 and OR99 and is part of the Middle Rogue Metropolitan Planning Organization (MRMPO). In July 2011, Rogue River's population was 2,140 . This is projected to grow 40% to 3,975 by 2040 by Portland State University's Center for Population Research, stated in Technical Memorandum \#3. The city has expanded south beyond manmade and natural barriers of railroad tracks, an interstate, and a river. The I5/Depot Street interchange is crammed in between the Central Oregon and Pacific railroad tracks and the Rogue River which becomes a series of restrictive barriers in close proximity to each other. To add to this
of the river. Pine/Classick Dr is even closer and a difficult barrier to cross. This leads to safety risks, traffic operations issues, and problems in future planning.

The City has developed from south of the Rogue River and stretched north beyond the city limits to build the high school on East Evans Creek Road (Pine Street in Rogue River). The main street of the community is the east/west oriented E Main Street/W Main Street/Foothill Boulevard. This is connected to I5 and OR99 by way of Depot Street.

Evaluation Criteria and Analysis

Intersection operations analysis results were compared to ODOT and the county standards and targets to assess performance and potential improvement. The City appears not to have traffic operational standards, so a v/c ratio of 0.95 was used, equivalent to both a state district-level highway v/c target in the Oregon Highway Plan (OHP) and Jackson County's inside-MPO standard. Jackson County and ODOT use volume to capacity (V/C) ratios, which compare traffic volume entering an intersection to theoretical capacity of an intersection. A v/c ratio of 1.0 indicates an intersection operating at capacity, while a v/c ratio over 1.0 indicates an intersection's capacity is exceeded.

The 1999 OHP mobility standards (amended in 2015) were used to evaluate v/c ratios for state highways in an MPO. Under the OHP, the maximum acceptable V/C ratio for I5 and the interchange ramp terminals is 0.85 and 0.95 for OR99. Jackson County uses V/C standard of 0.95 for intersections within an MPO.

The intersection operations analysis was conducted using SIDRA Version 7 software, with Highway Capacity Manual (HCM) 2010 methodologies. Signalized intersection V/C's were calculated using the critical volume to capacity ratio process described in HCM 2010. The I5 mainline segments and merge/diverge areas were analyzed with HCS 2010. Queuing was developed using the SIDRA software.

Volume Development

The 2040 volumes were grown from the $201630^{\text {th }}$ highest hour volumes developed in Technical Memorandum \#4. This aggregates the 2016 existing year conditions with the through trip growth and separate estimates of residential, commercial and industrial growth to compute the 2040 future volumes. See Appendix A for calculations and volume components for developing 2040 volumes.

The background through trip growth is based on historical Jackson County counts and ODOT's Future Volume Tables. These were taken approximately where the study area roadways cross the Urban Growth Boundary (UGB).

The residential, industrial, and commercial growths were based on differences between the 2040 and 2016 values in Technical Memorandum \#3. New single family homes, manufactured homes, and apartments were placed following City zoning and direction.

Residential volumes were calculated using Institute of Traffic Engineers (ITE) Trip Generation equations and then distributed to destinations.

In determining commercial and industrial growth, commuters traveling in and out of the city were split out from internal city commuters. ODOT's Statewide Integrated Model (SWIM) determined percentages of commuters traveling to Jackson County (Medford area), Josephine County (Grants Pass area) and local destinations, which determined:

- 32% of workers commuting via a vehicle go or from Jackson County
- 42% of workers commuting via a vehicle go or from Josephine County
- 26% commute locally

The commuter trips were further modified with American Community Survey (ACS) 2010-2015 commuting-to-work data for Rogue River:

- 13% walked/other
- 9% worked from home
- 8% carpooled

Commuting commercial and industrial employees going outside Rogue River were reduced by the carpool percentage. Local commercial employees were reduced by the walk/other and working from home percentages, while industrial employees were only reduced by the walk/other percentage.

SWIM determined commercial employee trip generation. The ITE Trip Generation "General Light Industrial" equation converted industrial employees to trips. A combination of typical land use types (i.e. gas station, motel, specialty retail, etc.) determined the inbound/outbound percentages.

SWIM also determined distribution of trips using the 2034 future scenario. The surrounding area was split into districts indicated below. "Outside" zones are trips to anywhere else, such as to Douglas County or California. The resulting distributions were generally consistent with the ACS, commuter patterns, and local perceptions. The general trip distribution was:

- From/to rest of Jackson County (via I5 and OR99) : 28\%
- From/to Josephine County (via I5 and OR99): 47\%
- From/to zones south of OR99 (via OR99 in both directions) : 20\%
- From/to Outside zones (via I5, both directions) : 5\%

The resulting individual residential, commercial, industrial, and total 2040 volumes are shown in Appendix A.

2040 Existing Conditions Analysis Results

Preliminary Signal Warrants

Preliminary Signal Warrants (PSW) were evaluated to determine if study area intersections were eligible for potential traffic control changes including signalization.

ODOT's Preliminary Signal Warrants (PSW) are based on Manual of Uniform Traffic Control Devices (MUTCD) Warrant 1 (Case A and B). Case A and B deal primarily with high volumes on the minor street and high volumes on the major street, respectively. Meeting preliminary signal warrants does not guarantee that a signal (or other change) will be installed. An intersection traffic control study would be needed by the appropriate jurisdiction weighing costs and benefits of such a change. For example, traffic signals can degrade a previously non-stopped major roadway while enhancing minor street operation. A traffic signal may introduce safety hazards that outweigh the benefits. In ODOT's jurisdiction, traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal is installed. No intersections met PSW's for 2040; however Main \& Pine Street and Pine \& Depot Street are close.

Volume to Capacity ratio \& Level of Service

For 2040, future volumes were evaluated to describe operating conditions. Table 1 shows v/c ratios for project area intersections; some are beyond the maximum allowable V/C ratio (0.85 or 0.95 for OHP) or 0.95 for county jurisdiction. For additional information on operation, delay-based LOS is shown.

Table 1: 2040 V/C Ratios \& LOS

Intersection	LOS 1	Highest Movement ${ }^{2}$	$\begin{gathered} \text { V/C } \\ \text { Ratio }^{3} \end{gathered}$	Queue ${ }^{4}$ (ft)	Agency	Standard
Depot St at Pine St	F (east)	EB	0.72	max	City	0.95
Depot St and I5 NB	E	SB	1.07	max	ODOT	0.85
Depot St and I5 SB	F	NB	1.07	max	ODOT	0.85
Depot St and OR99	E	EB	0.63	275	ODOT	0.85
Depot St and Main St	$\begin{gathered} \text { C } \\ \text { (south) } \end{gathered}$	NB	0.36	50	City	0.95
Main St and Wards Creek Rd	$\begin{gathered} \mathrm{B} \\ \text { (north) } \end{gathered}$	SB	0.13	< 50	City	0.95
Main St and Cedar St	$\begin{gathered} \mathrm{C} \\ \text { (north) } \end{gathered}$	SB	0.29	< 50	City	0.95
Main St and Broadway St	$\begin{gathered} \mathrm{C} \\ \text { (north) } \end{gathered}$	SB	0.35	< 50	City	0.95
Foothill Blvd and W Evans Creek Rd	$\begin{gathered} \mathrm{B} \\ \text { (north) } \end{gathered}$	SB	0.28	< 50	City	0.95
Main St and Pine St	E	WB	1.08	325	City	0.95
N River Rd and Classick Dr	B (east)	EB	0.13	< 50	City	0.95

${ }^{1}$ Corresponding leg that applies to the LOS is shown.
${ }^{2}$ The Highest Movement describes queues
${ }^{3}$ Black cells are V/Cs at or exceeding standard
${ }^{4}$ Black cells are queues that block other intersections
The ramp terminal intersections are over capacity at 1.07.
Table 2 shows the v/c for mainline I5 and the merge and diverge areas of the ramps. Under normal operation I5 should perform quite well, as seen in Table 2; no locations were over the 0.85 maximum OHP v/c target. Analysis worksheets are in Appendix B.

Table 2: 2040 Mainline \& Merge/Diverge v/c for I5 at Rogue River Interchange

Section	V/C
NB north of interchange	0.28
SB north of interchange	0.28
NB Diverge from I5	0.62
SB Diverge from I5	0.61
NB between ramps	0.23
SB between ramps	0.23
NB Merge onto I5	0.67
SB Merge onto I5	0.65
NB south of interchange	0.28
SB south of interchange	0.28

Average Daily Traffic to Capacity Ratio

With high volume to capacity ratios on Depot and Pine Streets and potential extensive queuing, peak spreading was investigated. This is when more traffic is on the roadway network than can be handled in a single peak hour and traffic spreads into adjacent hours. Adjacent peak hours will still be busy. Any spreading to occur in Rogue River would spread later beyond the 3:30-4:30 PM system peak hour as the school release time limits this from moving earlier in the day. The ADT/C ratio measures the potential of peak spreading and impact of congestion. The ADT/C is the ratio of daily traffic to capacity (capacity is defined by intersection approach). The highest approach ADT/C is reported for each intersection, except for Depot and Pine Street as the Classick Drive ADT/C was excessively high due to a very low approach capacity.

Table 3: 2040 ADT/C Ratio:

Intersection	Highest ADT/C
Depot St at Pine St	7.01
Depot St and I5 NB	11.06
Depot St and I5 SB	10.36
Depot St and OR99	6.31
Depot St and Main St	10.76
Main St and Wards Creek Rd	1.17
Main St and Cedar St	2.94
Main St and Broadway St	5.80
Foothill Blvd and W Evans Creek Rd	3.43
Main St and Pine St	12.94
N River Rd and Classick Dr	1.30

The ADT/C methodology was developed for FHWA (i) and has been used by ODOT for the statewide congestion management system. It is a higher level of congestion rating compared to queueing. ADT/C thresholds are as shown in Table 4.

ADT/C ratios of $6.75-10.75$ are more of the standard peak " 15 -min" typical urban congestion that stays within a single hour. Peak spreading is more likely to occur once the

ADT/C exceeds 10.75 when speeds decrease for good portions of the peak hour. Peak spreading is occurring with ADT/C's of 15.25 or greater.

Table 4: ADT/C Congestion Level Thresholds

Level	Condition	Description	Lower ADT/C	Upper ADT/C
1	Uncongested	No decrease in speeds during the peak hour.	0.00	6.75
2	Uncongested to Moderately		6.75	8.25
3	Moderately Congested	Speeds decrease slightly during portions of the peak hour.	8.25	9.25
4	Moderately to Congested		9.25	9.75
5	Congested 6	Congested to Very	Speeds decrease significantly during portions of the peak hour.	9.75
7	Very Congested	Speeds decrease substantially for substantial portions of the peak hour.	12.25	13.75
8	Very to Extremely	10.75	12.25	
9	Extremely Congested	Speeds decrease substantially for more than the peak hour.	15.25	24.00

Peak spreading was investigated and while peak hours will be heavy through the entire hour, trips will likely not delay to another hour. Main \& Pine Street’s high potential for extended congestion, reflected in queuing and ADT/C, merits investigation for improvements.

95 ${ }^{\underline{t h}}$ Percentile Queues

In addition to V/C ratios, $\mathrm{ADT} / \mathrm{C}$ ratios, and LOS, the $95^{\text {th }}$ percentile queues were analyzed to better understand system operation. Excessively long queues are often seen in areas where V/C ratios exceed standards. Figure 1 shows $204095^{\text {th }}$ percentile queuing of the study area. The largest queuing concerns are:

Depot Street and Pine Street: eastbound queue extends to intersection of Main Street and Pine Street. Therefore, the southbound queue waiting for a gap in traffic may extend more than shown, affecting Depot Street.

Depot St and I5 NB: southbound and northbound queues extend to the Pine Street intersection as well as the southbound ramp. The 300 foot queue is a concern as it potentially extends into the ramp deceleration portion.

Figure 1: 95 ${ }^{\text {th }}$ Percentile Queues

Depot St and I5 SB: southbound and northbound queues extend under I5 from intersection ramp to intersection ramp (both directions). This also means there is a queue that spills back to OR99. The 400 foot queue up the ramp is a significant concern as it may extend into the ramp deceleration portion.

Depot St and Main St: with only a minor delay at one intersection, there will be continuous standing traffic from OR99 to Main Street (entire length of Depot Street). The queue from Pine Street and Main Street will affect operation of this intersection.

The constrained interchange section can cause a number of operational issues. Any kind of incident or delay (parking operation or large truck turning) on Depot Street or a train crossing can quickly create congestion up the ramps and onto I5 mainline. Extending queues into the ramp deceleration portion or mainline traffic is a safety issue. Drivers may have to prematurely brake or brake harder than expected. This would increase the potential of rear-end crashes. The southbound off-ramp is more likely to have this problem more often than the northbound direction.

Southbound ramp terminal geometry is tight enough that trucks turning left can interfere with vehicles waiting in the left turn lane to head south on I5. The ramp is between I5 and the Rogue River Greenway and the Rogue River.

Non-Motorized Operations

The pedestrians and bicyclists counted from 3:00 to 5:00 p.m. were updated with the 40% population growth rate (Technical Memorandum \#3) from 2016 to 2040, Tables 5 and 6. There is a base level of use on the pedestrian and bicycle system throughout the City even in the highest vehicular volume areas.

Table 5: Pedestrian Crossings

Intersection	Pedestrian Crossings 3-5PM peak period			
	North	East	South	West
Depot St at Pine St	0	4	0	3
Depot St and I5 NB	1	10	0	10
Depot St and I5 SB	3	6	4	8
Depot St and OR99	0	1	3	3
Depot Stand Main St	11	7	8	48
Main St and Wards Creek Rd	4	0	N/A	3
Main St and Cedar St	36	17	N/A	3
Main St and Broadway St	14	4	N/A	14
Foothill Blvd and W Evans Creek Rd	5	15	N/A	0
Main St and Pine St	14	13	39	20
N River Rd and Classick Dr	6	N/A	0	0

Bicycle, pedestrian, and transit are largely influenced by adjacent modes. Without any planned projects, there is no difference between the 2016 and 2040 conditions. As traffic congestion grows comfort of bicyclists and pedestrians will decrease. Congestion at the interchange and surrounding roadways may cause issues with transit schedule.

Table 6: Bicycle Movements

Intersection	Bicycles Entering Volumes 3-5PM peak period			
	North	East	South	West
Depot St at Pine St	0	0	4	1
Depot St and I5 NB	1	0	4	N/A
Depot St and I5 SB	1	N/A	4	0
Depot St and OR99	11	4	0	0
Depot St and Main St	0	0	1	1
Main St and Wards Creek Rd	1	0	N/A	1
Main St and Cedar St	No Data	No Data	N/A	No Data
Main St and Broadway St	0	1	N/A	3
Foothill Blvd and W Evans Creek Rd	3	0	N/A	1
Main St and Pine St	0	0	0	1
N River Rd and Classick Dr	0	N/A	0	0

Summary

There are intersections beyond the maximum allowable v/c ratios in 2040 specifically at the interchange and along Pine Street. None of these intersections meet PSWs. Queuing and congestion along Pine and Depot Streets are extensive. This may cause issues on I5 off-ramps as drivers may need to brake prematurely, increasing the potential of crashes. Increasing vehicular flows will mean decreased bicycle and pedestrian comfort as well as less reliable transit service.

If you have any questions, please feel free to contact me at 503-986-4112.
cc: Peter Schuytema, TPAU
Brian Dunn, TPAU
Michael Baker, Region 3 Planning
Dan Dorrell, District 8 Traffic
File
(i) Estimating the Impacts of Urban Transportation Alternatives, Participant’s Notebook, FHWA/NHI December, 1995.

Appendix A: 2040 Future Volumes and Lane Configurations \& Volume Development

Future Volumes	by lane total		0/k		
Intersection	capacity	2040		adt/cap	worst
Depot St at Pine St					
South	1645	1095	10950	6.66	
East	47	130	1300	27.66	27.66
North	528	418	4180	7.92	
West	612	804	8040	13.14	13.14
Depot St and I5 NB					
South	642	795	7950	12.38	12.38
East	643	566	5660	8.80	
North	858	565	5650	6.59	
	1123	740	7400	6.59	
Depot St and I5 SB					
South	522	505	5050	9.67	9.67
North	421	295	2950	7.01	
	531	480	4800	9.04	
West	479	381	3810	7.95	
	581	90	900	1.55	
Depot St and OR99					
South	282	24	240	0.85	
East	379	189	1890	4.99	
North	720	175	1750	2.43	
	563	395	3950	7.02	7.02
West	803	450	4500	5.60	
Depot St and Main St					
South	79	130	1300	16.46	16.46
	580	370	3700	6.38	
East	1487	1095	10950	7.36	
North	60	95	950	15.83	15.83
West	1795	529	5290	2.95	
Main St and Wards Creek Rd					
East	1837	325	3250	1.77	1.77
North	641	110	1100	1.72	
West	1184	160	1600	1.35	
	1863	145	1450	0.78	
Main St and Cedar St					
East	1855	1015	10150	5.47	5.47
North	125	50	500	4.00	
West	1730	765	7650	4.42	
Main St and Broadway St					
East	1840	1035	10350	5.63	
North	69	65	650	9.42	9.42
	285	130	1300	4.56	
West	1340	870	8700	6.49	
Foothill Blvd and W Evans Cr East	Rd 1681	515	5150	3.06	

North	437	280	2800	6.41	6.41
West	1684	255	2550	1.51	
Main St and Pine St	313	515	5150	16.45	16.45
South	310	315	3150	10.16	
East	344	565	5650	16.42	
	329	550	5500	16.72	16.72
North	292	65	650	2.23	
	523	35	350	0.67	
West	720	455	4550	6.32	
N River Rd and Classick Dr	1804	325	3250	1.80	1.80
South	1848	115	1150	0.62	
North	710	60	600	0.85	
West					

2040							
835	8350	5.08					
110	1100	23.40	23.4				
370	3700	7.01					
285	2850	4.66		east leg is actually higher, has no capacity			
665	6650	10.36	10.36				
455	4550	7.08					
280	2800	3.26		1981	1305	13050	6.59
470	4700	4.19					
475.00	4750	9.10	9.1				
215	2150	5.11		952	775	7750	8.14
455	4550	8.57					
280	2800	5.85		1060	471	4710	4.44
75	750	1.29					
24	240	0.85					
179	1790	4.72					
175	1750	2.43		1283	570	5700	4.44
355.00	3550	6.31					
415.00	4150	5.17					
85.00	850	10.76	10.76	659	500	5000	7.59
280.00	2800	4.83					
560.00	5600	3.77					
55.00	550	9.17					
245.00	2450	1.36					
185.00	1850	1.01					
75.00	750	1.17					
80.00	800	0.68					
105.00	1050	0.56					
545.00	5450	2.94					
35.00	350	2.80					
460.00	4600	2.66					
40.00	400	5.80		354	195	1950	5.51
85.00	850	2.98					
545.00	5450	4.07					
370.00	3700	2.20					

150.00	1500	3.43
185.00	1850	1.10

405.00	4050	12.94	12.94				
85.00	850	2.74		654	880	8800	13.46
320.00	3200	9.30					
330.00	3300	10.03		621	615	6150	9.90
40.00	400	1.37					
40.00	400	0.76		1243	490	4900	3.94
245.00	2450	3.40					

235.00	2350	1.30
110.00	1100	0.60
50.00	500	0.70

Appendix B: Analysis Worksheets

Critical Movement Analysis $\quad 2040$ no build

SB	
east west wb left and eb thru	215
SB tru left and SBR	285

10\%

vic
$x_{c}=\frac{C}{C-L} \operatorname{Sum}($ ViNsi $)$

25\%

SB east we

$\stackrel{\mathrm{NB}}{\text { east wes }}$

vic
$x_{c}=\frac{\mathrm{C}}{\mathrm{C}-\mathrm{L}} \operatorname{Sum}($ Villsi)
$\underset{\substack{108 \\ 1.13}}{ }$

Vi	$=$ demand	$=$NB 1125 Nsi $=$ Sat Fow	$=$

$\underset{\substack{\mathrm{NB} \\ \text { est }}}{ }$
$\begin{aligned} & \text { east west } \\ & \text { eb left and wb thru }\end{aligned} \quad 85$
noth south
NB thru left and NBR
$255+$

vic

HCM 2010 Chapter 11 Capacity of freeway segment varies by FFS		\# of lanes	2		2040-2015	
(pc/h/ln)	FFS					
2400	70,75					
2350	65	k factor	0.10			24
2300	60					
2250	55	15 to 16	1.189759	0.189759	210.009036	
	2016		Directional		Seasonal Trend Factor	2040
Segment:	$\overline{\mathrm{NB} \text {, south }}$ of interchange	2015 vol	2015 vol	2016 volume	e 0.9182	2368
Flow Rate, Vp:	1094	17710	1771	1787	1946	1332
FFS:	70		X $0.10=$			70
Capacity:	4800					4800
	0.23					0.28
Segment:	SB, south of interchange					2408
Flow Rate, Vp:	1094	18010	1801	1817	1979	1354
FFS:	70					70
Capacity:	4800					4800
	0.23					0.28
Segment:	NB, north of interchange					2359
Flow Rate, Vp:	1090	17640	1764	1780	1939	1327
FFS:	70					70
Capacity:	4800					4800
v/c	0.23					0.28
Segment:	SB, north of interchange					2416
Flow Rate, Vp:	1117	18070	1807	1823	1986	1359
FFS:	70					70
Capacity:	4800					4800
	0.23					0.28
Segment:	NB, between ramps					1979
Flow Rate, Vp:	914	14800	1480	1493	1626	1113
FFS:	70					70
Capacity:	4800					4800
v/c	0.19					0.23
Segment:	SB, between ramps					1994
Flow Rate, Vp:	922	14910	1491	1504	1639	1121
FFS:	70					70
Capacity:	4800					4800
v/c	0.19					0.23

VFi	1641	4800	0.34
Vfo	1264	4800	0.26
VR	377	2100	0.18
V12	1641	4400	0.37
I-5 SB off ramp	Actual Flo	imum	v/c
VFi	2010	4800	0.42
VFo	1535	4800	0.32
VR	475	2100	0.23
V12	2010	4400	0.46
Merge			
I-5 NB on ramp	Actual Flowaximum Flc		v/c
Vfo	1882	4800	0.39
VR12	1882	4600	0.41
I-5 SB on ramp	Actual Flowaximum Flc		v/c
Vfo	2412	4800	0.50
VR12	2412	4600	0.52

2040			
I-5 NB off ramp	Actual Flowaximum Flc		v/c
VFi	2717	4800	0.57
VFo	2200	4800	0.46
VR	517	2100	0.25
V12	2717	4400	0.62
I-5 SB off ramp	Actual Flowaximum Flc		v/c
VFi	2663	4800	0.55
Vfo	2264	4800	0.47
VR	399	2100	0.19
V12	2663	4400	0.61
Merge			
I-5 NB on ramp	Actual Flowaximum Flc		v/c
Vfo	3098	4800	0.65
VR12	3098	4600	0.67
I-5 SB on ramp	Actual Flowaximum Flc		v/c
VFo	2979	4800	0.62
VR12	2979	4600	0.65

SIDRA Intersection Output

SITE LAYOUT

STof Site: 104 [DepotSt99-Conversion]

Depot St at 99 (Stop control)
Stop (All-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:55:21 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes
Site: 104 [DepotSt99 - Conversion]
Depot St at 99 (Stop control)
Stop (All-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: minor	24	24	0
E: 99	174	171	3
N: Depot	530	519	11
W: 99	415	407	8
Total	1143	1120	23

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:55:25 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 104 [DepotSt99-Conversion]

Depot St at 99 (Stop control)
Stop (All-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	$\begin{gathered} \hline \text { Cap. } \\ \text { Adj. } \\ \% \end{gathered}$	Prob. Block. \%
South: minor													
Lane 1	24	2.0	269	0.089	100	17.7	LOS C	0.3	7.7	Full	1600	0.0	0.0
Approach	24	2.0		0.089		17.7	LOS C	0.3	7.7				
East: 99													
Lane 1	174	2.0	358	0.486	100	22.2	LOS C	2.3	58.7	Full	1600	0.0	0.0
Approach	174	2.0		0.486		22.2	LOS C	2.3	58.7				
North: Depot													
Lane 1	175	2.0	720	0.243	100	7.4	LOS A	0.8	21.1	Full	550	0.0	0.0
Lane 2	355	2.0	563	0.631	100	16.1	LOS C	3.7	93.7	Short	200	0.0	NA
Approach	530	2.0		0.631		13.2	LOS B	3.7	93.7				
West: 99													
Lane 1	415	2.0	787	0.527	100	12.6	LOS B	2.5	64.3	Full	100	0.0	0.0
Approach	415	2.0		0.527		12.6	LOS B	2.5	64.3				
Intersection	1143	2.0		0.631		14.4	LOS B	3.7	93.7				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Tuesday, September 26, 2017 1:20:12 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 104 [DepotSt99 - Conversion]

Depot St at 99 (Stop control)
Stop (All-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: minor											
1	L2	5	2.0	0.089	17.7	LOS C	0.3	7.7	0.95	1.19	20.3
6	T1	15	2.0	0.089	17.7	LOS C	0.3	7.7	0.95	1.19	23.5
16	R2	4	2.0	0.089	17.7	LOS C	0.3	7.7	0.95	1.19	27.3
Appr		24	2.0	0.089	17.7	LOS C	0.3	7.7	0.95	1.19	23.7
East: 99											
7	L2	4	2.0	0.486	22.2	LOS C	2.3	58.7	0.98	1.40	25.6
4	T1	50	2.0	0.486	22.2	LOS C	2.3	58.7	0.98	1.40	19.0
14	R2	120	2.0	0.486	22.2	LOS C	2.3	58.7	0.98	1.40	22.0
Appro		174	2.0	0.486	22.2	LOS C	2.3	58.7	0.98	1.40	21.3
North: Depot											
5	L2	165	2.0	0.243	7.4	LOS A	0.8	21.1	0.73	1.03	27.7
2	T1	10	2.0	0.243	7.4	LOS A	0.8	21.1	0.73	1.03	27.8
12	R2	355	2.0	0.631	16.1	LOS C	3.7	93.7	0.94	1.51	13.2
Approach		530	2.0	0.631	13.2	LOS B	3.7	93.7	0.87	1.35	19.3
West: 99											
3	L2	340	2.0	0.527	12.6	LOS B	2.5	64.3	0.80	1.27	15.7
8	T1	70	2.0	0.527	12.6	LOS B	2.5	64.3	0.80	1.27	24.6
18	R2	5	2.0	0.527	12.6	LOS B	2.5	64.3	0.80	1.27	24.8
Appr		415	2.0	0.527	12.6	LOS B	2.5	64.3	0.80	1.27	18.0
All V	cles	1143	2.0	0.631	14.4	LOS B	3.7	93.7	0.86	1.33	19.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Tuesday, September 26, 2017 1:20:12 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)

STof Site: 104 [DepotSt99 - Conversion]

Depot St at 99 (Stop control)
Stop (All-Way)

All Movement Classes

	South	East	North	West	Intersection
Vehicle Queue (\%ile)	8	59	94	64	94

SITE LAYOUT

STop Site: 105 [DepotStMainSt]

Depot St at Main St (Stop control)
Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 2:41:56 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 105 [DepotStMainSt]

Depot St at Main St (Stop control)
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Depot St	365	358	7
E: Main St	560	549	11
N: OakSt	55	54	1
W: Major Road	245	240	5
Total	1225	1201	25

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 2:42:11 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 105 [DepotStMainSt]

Depot St at Main St (Stop control)
Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { 2ueue } \\ \text { Dist } \\ \mathrm{ft} \end{array}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Depot St													
Lane 1	85	2.0	285	0.299	100	23.0	LOS C	1.3	32.7	Full	350	0.0	0.0
Lane 2	280	2.0	794	0.353	100	12.0	LOS B	1.9	47.3	Short (P)	50	0.0	NA
Approach	365	2.0		0.353		14.5	LOS B	1.9	47.3				
East: Main St													
Lane 1	560	2.0	1557	0.360	100	5.4	LOS A	2.0	50.3	Full	300	0.0	0.0
Approach	560	2.0		0.360		5.4	NA	2.0	50.3				
North: OakSt													
Lane 1	55	2.0	240	0.229	100	24.4	LOS C	0.9	21.6	Full	1600	0.0	0.0
Approach	55	2.0		0.229		24.4	LOS C	0.9	21.6				
West: Major Road													
Lane 1	245	2.0	1800	0.136	100	3.0	LOS A	0.1	1.6	Full	400	0.0	0.0
Approach	245	2.0		0.136		3.0	NA	0.1	1.6				
Intersection	1225	2.0		0.360		8.5	NA	2.0	50.3				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:57:48 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 105 [DepotStMainSt]

Depot St at Main St (Stop control)
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Depot St											
3	L2	70	2.0	0.299	23.7	LOS C	1.3	32.7	0.77	0.81	11.8
8	T1	15	2.0	0.299	19.3	LOS C	1.3	32.7	0.77	0.81	20.6
18	R2	280	2.0	0.353	12.0	LOS B	1.9	47.3	0.49	0.37	14.0
Appr		365	2.0	0.353	14.5	LOS B	1.9	47.3	0.55	0.47	14.0
East: Main St											
1	L2	220	2.0	0.360	6.5	LOS A	2.0	50.3	0.36	0.10	20.9
6	T1	320	2.0	0.360	4.6	LOS A	2.0	50.3	0.36	0.10	24.8
16	R2	20	2.0	0.360	6.4	LOS A	2.0	50.3	0.36	0.10	30.7
Appr		560	2.0	0.360	5.4	NA	2.0	50.3	0.36	0.10	23.6
North: OakSt											
7	L2	30	2.0	0.229	33.3	LOS D	0.9	21.6	0.75	0.75	19.7
4	T1	15	2.0	0.229	17.6	LOS C	0.9	21.6	0.75	0.75	20.0
14	R2	10	2.0	0.229	7.9	LOS A	0.9	21.6	0.75	0.75	20.5
Approach		55	2.0	0.229	24.4	LOS C	0.9	21.6	0.75	0.75	19.9
West: Major Road											
52	L2	5	2.0	0.136	40.2	LOSE	0.1	1.6	0.03	0.00	33.6
	T1	210	2.0	0.136	1.7	LOS A	0.1	1.6	0.03	0.00	30.7
12	R2	30	2.0	0.136	6.0	LOS A	0.1	1.6	0.03	0.00	26.5
Approach		245	2.0	0.136	3.0	NA	0.1	1.6	0.03	0.00	30.3
All Vehicles		1225	2.0	0.360	8.5	NA	2.0	50.3	0.37	0.22	20.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^0]
QUEUE DISTANCE (\%ILE)

95\% Back of Queue Distance per lane (feet)

Site: 105 [DepotStMainSt]

Depot St at Main St (Stop control)
Stop (Two-Way)

All Movement Classes

	South	East	North	West	Intersection
Vehicle Queue (\%ile)	47	50	22	2	50

Colour code based on Queue Storage Ratio

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:57:48 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

SITE LAYOUT

6 Site: 102 [DepotStNBi5]
Depot St at I5 NB entrance
Signals - Actuated Isolated

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Wednesday, August 08, 2018 2:46:58 PM
Project: Z:ICounty\JacksonlRogueRiver|TSP_Update_Analysisl17_Narrative_Technical_MemolTM7|TM7appendix|20180328_2040nobuild.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

B Site: 102 [DepotStNBi5]

Depot St at I5 NB entrance
Signals - Actuated Isolated

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Depot St	665	652	13
E: NB off ramp	456	447	9
N: Depot	750	735	15
Total	1871	1834	37

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Wednesday, August 08, 2018 2:47:04 PM
Project: Z:ICounty|JacksonlRogueRiver\TSP_Update_Analysisl17_Narrative_Technical_MemolTM7|TM7appendix\20180328_2040nobuild.sip7

MOVEMENT SUMMARY

Site: 102 [DepotStNBi5]
䖵 Network: N101 [Existing]
Depot St at I5 NB entrance
Signals - Actuated Coordinated Cycle Time $=100$ seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Movement Performance - Vehicles													
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	$\begin{aligned} & \text { Demanc } \\ & \text { Total } \\ & \text { veh/h } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { lows } \\ & \text { HV } \end{aligned}$	Arrival Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Depot St													
3	L2	85	2.0	85	2.0	1.107	101.0	LOS F	19.3	489.6	1.00	1.34	8.8
8	T1	580	2.0	580	2.0	1.107	101.0	LOS F	19.3	489.6	1.00	1.34	2.0
Appr		665	2.0	665	2.0	1.107	101.0	LOS F	19.3	489.6	1.00	1.34	3.1
East: NB off ramp													
1	L2	200	2.0	200	2.0	0.956	62.4	LOS E	27.1	687.6	1.00	1.16	8.7
6	T1	1	2.0	1	2.0	0.956	62.4	LOS E	27.1	687.6	1.00	1.16	13.4
16	R2	255	2.0	255	2.0	0.956	62.4	LOS E	27.1	687.6	1.00	1.16	8.7
Appr		456	2.0	456	2.0	0.956	62.4	LOS E	27.1	687.6	1.00	1.16	8.7
North: Depot													
4	T1	470	2.0	465	2.0	0.627	23.8	LOS C	3.2	81.6	0.75	0.67	2.2
14	R2	280	2.0	277	2.0	0.627	18.3	LOS B	3.2	81.6	0.73	0.66	15.3
Approach		750	2.0	$742^{N 1}$	2.0	0.627	21.7	LOS C	3.2	81.6	0.75	0.66	10.5
All V	icles	1871	2.0	$1863{ }^{\text {N1 }}$	2.0	1.107	60.0	LOS E	27.1	687.6	0.90	1.03	6.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 21.1 \%
Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance ft	Prop. Queued	Effective Stop Rate per ped
2P	South Full Crossing	1	20.5	LOS C	0.0	0.0	0.64	0.64
8P	East Full Crossing	11	12.5	LOS B	0.0	0.0	0.50	0.50
6P	North Full Crossing	1	20.5	LOS C	0.0	0.0	0.64	0.64
4P	West Full Crossing	11	12.5	LOS B	0.0	0.0	0.50	0.50
All Pedestrians		24	13.2	LOS B			0.51	0.51

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\17_Narrative_Technical_MemolTM7\TM7appendix\20180328_2040nobuild.sip7

PHASING SUMMARY

Site: 102 [DepotStNBi5]
Depot St at I5 NB entrance
Signals - Actuated Coordinated Cycle Time $=100$ seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Phase Times determined by the program
Phase Sequence: CCG Phasing
Reference Phase: Phase A
Input Phase Sequence: A, B
Output Phase Sequence: A, B
Phase Timing Results

Phase	A	B
Phase Change Time (sec)	0	54
Green Time (sec)	50	42
Phase Time (sec)	54	46
Phase Split	54%	46%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

REF: Reference Phase
VAR: Variable Phase
\square

Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement

Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:ICounty\Jackson\RogueRiver\TSP_Update_Analysisl17_Narrative_Technical_MemolTM71TM7appendix\20180328_2040nobuild.sip7

TIMING ANALYSIS
6 Site: 102 [DepotStNBi5]
Depot St at I5 NB entrance
Signals - Actuated Coordinated Cycle Time $=100$ seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Phase Times determined by the program
Phase Sequence: CCG Phasing
Reference Phase: Phase A
Input Phase Sequence: A, B
Output Phase Sequence: A, B

\# Combined timing results are shown for all Movement Classes except any listed separately.

* Critical Movement/Green Period
\wedge Pedestrian Actuation / Phase Actuation for probability of no arrivals in an average signal cycle:
For Pedestrian / Vehicle Movements, the Minimum Required Time, Lost Time and Effective Green Time have been reduced.

Min/Max When the Required Movement Time is subject to minimum or maximum condition, the Flow Ratio and the corresponding Required Green Time Ratio are not used for cycle time calculations and the Adjusted Lost Time equals the Required Movement Time.

Phase Information									
Phase	Ref. Phase	Change Time	Starting Intergreen	Green Start	Displayed Green	Green End	Terminating Intergreen	Phase Time	Phase Split
		sec	\%						
A	Yes	0	4	4	50	54	4	54	54
B	No	54	4	58	42	100	4	46	46

This table gives adjusted values of Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%. See the Phase Information section in the Detailed Output report for input values of Yellow Time, All-Red Time and the unadjusted Intergreen Times.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:ICounty\JacksonlRogueRiverlTSP_Update_Analysisl17_Narrative_Technical_MemolTM7\TM7appendix|20180328_2040nobuild.sip7

MOVEMENT TIMING

B Site: 102 [DepotStNBi5]
Depot St at I5 NB entrance
Signals - Actuated Coordinated Cycle Time = 100 seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Phase Times determined by the program
Phase Sequence: CCG Phasing
Reference Phase: Phase A
Input Phase Sequence: A, B
Output Phase Sequence: A, B

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\17_Narrative_Technical_MemolTM7\TM7appendix\20180328_2040nobuild.sip7

SITE LAYOUT

SToF Site: 101 [DepotStPineSt]

Depot at Pine St
Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 4:00:57 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [DepotStPineSt]

Depot at Pine St
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Depot St	835	818	17
E: Classick Dr	110	108	2
N: Depot St	268	263	5
W: Pine St	420	412	8
Total	1633	1600	33

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 4:01:00 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 101 [DepotStPineSt]

Depot at Pine St
Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	Queue ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Depot St													
Lane 1	835	2.0	1643	0.508	100	0.0	LOS A	0.0	0.0	Full	50	0.0	0.0
Approach	835	2.0		0.508		0.0	NA	0.0	0.0				
East: Classick Dr													
Lane 1	110	2.0	152	0.724	100	74.2	LOS F	3.8	97.3	Full	1600	0.0	0.0
Approach	110	2.0		0.724		74.2	LOS F	3.8	97.3				
North: Depot St													
Lane 1	268	2.0	604	0.444	100	15.6	LOS C	2.6	65.3	Full	400	0.0	0.0
Approach	268	2.0		0.444		15.6	LOS C	2.6	65.3				
West: Pine St													
Lane 1	420	2.0	733	0.573	100	16.3	LOS C	5.7	143.9	Full	400	0.0	0.0
Approach	420	2.0		0.573		16.3	LOS C	5.7	143.9				
Intersection	1633	2.0		0.724		11.8	NA	5.7	143.9				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c>1 irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:52:27 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 101 [DepotStPineSt]

Depot at Pine St
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Depot St											
3	L2	380	2.0	0.508	0.0	LOS A	0.0	0.0	0.00	0.00	27.6
8	T1	355	2.0	0.508	0.0	LOS A	0.0	0.0	0.00	0.00	34.1
18	R2	100	2.0	0.508	0.0	LOS A	0.0	0.0	0.00	0.00	35.4
Appro		835	2.0	0.508	0.0	NA	0.0	0.0	0.00	0.00	31.8
East: Classick Dr											
1	L2	85	2.0	0.724	79.5	LOS F	3.8	97.3	0.94	1.15	10.4
6	T1	20	2.0	0.724	58.2	LOS F	3.8	97.3	0.94	1.15	11.9
16	R2	5	2.0	0.724	48.6	LOSE	3.8	97.3	0.94	1.15	11.9
Appro		110	2.0	0.724	74.2	LOS F	3.8	97.3	0.94	1.15	10.8
North: Depot St											
7	L2	4	2.0	0.444	23.2	LOS C	2.6	65.3	0.60	0.66	23.3
4	T1	260	2.0	0.444	15.5	LOS C	2.6	65.3	0.60	0.66	10.5
14	R2	4	2.0	0.444	16.8	LOS C	2.6	65.3	0.60	0.66	14.8
Appro		268	2.0	0.444	15.6	LOS C	2.6	65.3	0.60	0.66	10.9
West: Pine St											
5	L2	5	2.0	0.573	73.0	LOS F	5.7	143.9	0.66	0.67	14.4
2	T1	10	2.0	0.573	42.1	LOS E	5.7	143.9	0.66	0.67	23.1
12	R2	405	2.0	0.573	15.0	LOS B	5.7	143.9	0.66	0.67	10.4
Approach		420	2.0	0.573	16.3	LOS C	5.7	143.9	0.66	0.67	11.0
All Ve	cles	1633	2.0	0.724	11.8	NA	5.7	143.9	0.33	0.36	16.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

QUEUE DISTANCE (\%ILE)

Largest 95% Back of Queue Distance for any lane used by vehicle movement (feet)
(siof Site: 101 [DepotStPineSt]
Depot at Pine St
Stop (Two-Way)

All Movement Classes

	South	East	North	West	Intersection
Vehicle Queue (\%ile)	0	97	65	144	144

Colour code based on Queue Storage Ratio

$\square<0.6]$	$[0.6-0.7]$	$[0.7-0.8]$
$[0.8-0.9]$	$[0.9-1.0]$	$[>1.0]$

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:52:27 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [DepotStPineSt]

Depot at Pine St
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Depot St	835	818	17
E: Classick Dr	110	108	2
N: Depot St	268	263	5
W: Pine St	420	412	8
Total	1633	1600	33

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 4:03:03 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 101 [DepotStPineSt]
Depot at Pine St
Stop (Two-Way)

Lane Use and Performance														
		and ows HV \%	Arrival Total veh/h	ows HV \%	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	of Queue Dist ft	Lane Config	$\begin{array}{cc} \text { Lane } & \text { Cap. } \\ \text { Lengt } & \text { Adj. } \\ \mathrm{h} & \\ \mathrm{ft} & \% \\ \hline \end{array}$	Prob. Block. \%
South: Depot St														
Lane 1	835	2.0	703	2.0	1643	0.428	100	0.0	LOS A	0.0	0.0	Full	$50 \quad 0.0$	0.0
Approach	835		$703{ }^{\text {N1 }}$	2.0		0.428		0.0	NA	0.0	0.0			
East: Classick Dr														
Lane 1	110	2.0	110	2.0	103	1.065	100	184.5	LOS F	7.0	178.7	Full	$1600-43.6{ }^{\text {N3 }}$	0.0
Approach	110	2.0	110	2.0		1.065		184.5	LOS F	7.0	178.7			
North: Depot St														
Lane 1	268	2.0	267	2.0	330	0.811	100	49.6	LOS E	4.2	107.8	Full	400-49.2 ${ }^{\text {N3 }}$	0.0
Approach	268	2.0	$267{ }^{\text {N1 }}$	2.0		0.811		49.6	LOS E	4.2	107.8			
West: Pine St														
Lane 1	420	2.0	418	2.0	378	1.104	100	110.7	LOS F	27.6	701.9	Full	400-49.1 ${ }^{\text {N3 }}$	25.4
Approach	420	2.0	$418{ }^{\text {N1 }}$	2.0		1.104		110.7	LOS F	27.6	701.9			
Intersectio n	1633		$1498{ }^{\text {N1 }}$	2.2		1.104		53.2	NA	27.6	701.9			

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Network Data dialog (Network tab). Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $v / c>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 12.6 \%
Number of Iterations: 10 (maximum specified: 10)
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
N3 Capacity Adjustment due to downstream lane blockage determined by the program.
SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:04:00 PM
Project: Z:ICounty\Jackson|RogueRiver\TSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

SITE LAYOUT

SToF Site: 101 [DepotStPineSt]

Depot at Pine St
Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 4:02:57 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 101 [DepotStPineSt]
Depot at Pine St
Stop (Two-Way)

Movement Performance - Vehicles													
$\begin{gathered} \text { Mov } \\ \hline \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Arrival Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Depot St													
3	L2	380	2.0	320	2.0	0.428	0.0	LOS A	0.0	0.0	0.00	0.00	21.0
8	T1	355	2.0	299	2.0	0.428	0.0	LOS A	0.0	0.0	0.00	0.00	21.0
18	R2	100	2.0	84	2.0	0.428	0.0	LOS A	0.0	0.0	0.00	0.00	21.0
Appro		835	2.0	$703{ }^{\text {N1 }}$	2.0	0.428	0.0	NA	0.0	0.0	0.00	0.00	21.0
East: Classick Dr													
1	L2	85	2.0	85	2.0	1.065	191.9	LOS F	7.0	178.7	1.00	1.69	5.1
6	T1	20	2.0	20	2.0	1.065	162.1	LOS F	7.0	178.7	1.00	1.69	5.1
16	R2	5	2.0	5	2.0	1.065	148.9	LOS F	7.0	178.7	1.00	1.69	5.1
Appro		110	2.0	110	2.0	1.065	184.5	LOS F	7.0	178.7	1.00	1.69	5.1
North: Depot St													
7	L2	4	2.0	4	2.0	0.811	60.4	LOS F	4.2	107.8	0.55	0.82	4.7
4	T1	260	2.0	259	2.0	0.811	49.4	LOSE	4.2	107.8	0.55	0.82	4.7
14	R2	4	2.0	4	2.0	0.811	51.3	LOS F	4.2	107.8	0.55	0.82	4.7
Approach		268	2.0	$267{ }^{\text {N1 }}$	2.0	0.811	49.6	LOS E	4.2	107.8	0.55	0.82	4.7
West: Pine St													
5	L2	5	2.0	5	2.0	1.104	178.2	LOS F	27.6	701.9	1.00	2.12	2.5
2	T1	10	2.0	10	2.0	1.104	138.3	LOS F	27.6	701.9	1.00	2.12	2.5
12	R2	405	2.0	403	2.0	1.104	109.2	LOS F	27.6	701.9	1.00	2.12	2.5
Approach		420	2.0	$418{ }^{\text {N1 }}$	2.0	1.104	110.7	LOS F	27.6	701.9	1.00	2.12	2.5
All Vehicles		1633	2.0	$1498{ }^{\text {N1 }}$	2.2	1.104	53.2	NA	27.6	701.9	0.45	0.86	3.9

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v / c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 12.6 \%
Number of Iterations: 10 (maximum specified: 10)
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)

STof Site: 101 [DepotStPineSt]
Depot at Pine St
Stop (Two-Way)

All Movement Classes

	South	East	North	West	Intersection
Vehicle Queue (\%ile)	0	179	108	702	702

Colour code based on Queue Storage Ratio

$\square<0.6]$	$[0.6-0.7]$	$\square 0.7-0.8]$	$\square 0.8-0.9]$	$\square 0.9-1.0]$
$[>1.0]$				

Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:04:00 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

目 Site: 103 [DepotStSBi5]

Depot St at I5 SB exit
Signals - Actuated Isolated

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: RoadName	475	466	10
N: Depot St	775	760	16
W: I5 ramp approach	356	349	7
Total	1606	1574	32

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Wednesday, August 08, 2018 2:56:17 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\17_Narrative_Technical_MemolTM7\TM7appendix\20180328_2040nobuild.sip7

SITE LAYOUT

B Site: 103 [DepotStSBi5]
Depot St at I5 SB exit
Signals - Actuated Isolated

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Wednesday, August 08, 2018 2:56:14 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysis\17_Narrative_Technical_MemolTM7\TM7appendix\20180328_2040nobuild.sip7

MOVEMENT SUMMARY

Site: 103 [DepotStSBi5]
䖵 Network: N101 [Existing]
Depot St at I5 SB exit
Signals - Actuated Coordinated Cycle Time $=100$ seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Movement Performance - Vehicles													
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Arrival Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: RoadName													
8	T1	385	2.0	385	2.0	1.026	73.8	LOS F	32.5	825.0	1.00	1.19	4.3
18	R2	90	2.0	90	2.0	1.026	73.8	LOS F	32.5	825.0	1.00	1.19	10.2
Appr		475	2.0	475	2.0	1.026	73.8	LOS E	32.5	825.0	1.00	1.19	5.9
North: Depot St													
7	L2	295	2.0	294	2.0	4.117	1449.8	LOS F	19.3	489.6	1.00	2.61	0.8
4	T1	480	2.0	478	2.0	0.557	17.6	LOS B	13.7	349.2	0.56	0.50	8.6
Approach		775	2.0	$771{ }^{\text {N1 }}$	2.0	4.117	562.8	LOS F	19.3	489.6	0.73	1.30	1.1
West: I5 ramp approach													
52	L2	280	2.0	280	2.0	0.817	48.8	LOS D	14.9	379.5	0.93	0.82	10.5
	T1	1	2.0	1	2.0	0.817	48.8	LOS D	14.9	379.5	0.93	0.82	15.4
12	R2	75	2.0	75	2.0	0.085	2.4	LOS A	0.9	21.9	0.25	0.20	18.5
Approach		356	2.0	356	2.0	0.817	39.0	LOS D	14.9	379.5	0.79	0.69	11.5
All Vehicles		1606	2.0	$1602{ }^{\text {N1 }}$	2.0	4.117	301.4	LOS F	32.5	825.0	0.82	1.13	2.1

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 21.1 \%
Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance \qquad	Prop. Queued	Effective Stop Rate per ped
2P	South Full Crossing	4	18.6	LOS B	0.0	0.0	0.61	0.61
8P	East Full Crossing	7	12.5	LOS B	0.0	0.0	0.50	0.50
6P	North Full Crossing	3	20.5	LOS C	0.0	0.0	0.64	0.64
4 P	West Full Crossing	9	14.1	LOS B	0.0	0.0	0.53	0.53
All Pedestrians		23	15.4	LOS B			0.55	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\17_Narrative_Technical_MemolTM7\TM7appendix\20180328_2040nobuild.sip7

PHASING SUMMARY

Site: 103 [DepotStSBi5]
Depot St at I5 SB exit
Signals - Actuated Coordinated Cycle Time = 100 seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Phase Times determined by the program
Phase Sequence: CCG Phasing
Reference Phase: Phase A
Input Phase Sequence: A, B
Output Phase Sequence: A, B
Phase Timing Results

Phase	A	B
Phase Change Time (sec)	0	54
Green Time (sec)	50	42
Phase Time (sec)	54	46
Phase Split	54%	46%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

REF: Reference Phase
VAR: Variable Phase
\square

Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement

Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:ICounty\Jackson\RogueRiver\TSP_Update_Analysisl17_Narrative_Technical_MemolTM71TM7appendix\20180328_2040nobuild.sip7

Depot St at I5 SB exit
Signals - Actuated Coordinated Cycle Time $=100$ seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Phase Times determined by the program
Phase Sequence: CCG Phasing
Reference Phase: Phase A
Input Phase Sequence: A, B
Output Phase Sequence: A, B

\# Combined timing results are shown for all Movement Classes except any listed separately.
\wedge Pedestrian Actuation / Phase Actuation for probability of no arrivals in an average signal cycle:
For Pedestrian / Vehicle Movements, the Minimum Required Time, Lost Time and Effective Green Time have been reduced.

Critical Movements and Cycle Time								
Critical Mov ID	Appr \& Dest	Green Period	[From	To]	Adjusted Lost Time	Adjusted Flow Ratio	Req Green Time Ratio	Required Mov Time
			sec					sec

Phase Information									
Phase	Ref. Phase	Change Time sec	$\begin{array}{r} \text { Starting } \\ \text { Intergreen } \\ \text { sec } \\ \hline \end{array}$	$\begin{gathered} \text { Green } \\ \text { Start } \\ \text { sec } \end{gathered}$	$\begin{array}{r} \text { Displayed } \\ \text { Green } \\ \text { sec } \end{array}$	Green End sec	Terminating Intergreen sec	Phase Time sec	Phase Split \%
A	Yes	0	4	4	50	54	4	54	54
B	No	54	4	58	42	100	4	46	46

This table gives adjusted values of Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%. See the Phase Information section in the Detailed Output report for input values of Yellow Time, All-Red Time and the unadjusted Intergreen Times.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:ICounty\Jackson\RogueRiver|TSP_Update_Analysisl17_Narrative_Technical_MemolTM7\TM7appendix|20180328_2040nobuild.sip7

MOVEMENT TIMING

E Site: 103 [DepotStSBi5]
Depot St at I5 SB exit
Signals - Actuated Coordinated Cycle Time = 100 seconds (Network Cycle Time - Program)
Common Control Group: CCG1 [CCGName]

Phase Times determined by the program
Phase Sequence: CCG Phasing
Reference Phase: Phase A
Input Phase Sequence: A, B
Output Phase Sequence: A, B

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, August 02, 2018 4:21:07 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\17_Narrative_Technical_MemolTM7\TM7appendix\20180328_2040nobuild.sip7

SITE LAYOUT

STor Site: 108 [EMainStBroadway]

E Main St at Cedar St (Stop control)
Stop (Two-Way)
"

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:42:32 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes
Site: 108 [EMainStBroadway]
E Main St at Cedar St (Stop control)
Stop (Two-Way)

Volume Display Method: Total and \%

	R2	L2
Tot	85	40
LV	98%	98%
HV	2%	2%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
E: E Main	530	519	11
N: Broadway St	125	123	3
W: E Main St	545	534	11
Total	1200	1176	24

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:42:34 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 108 [EMainStBroadway]

E Main St at Cedar St (Stop control)
Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \\ \hline \end{array}$	Lane Config	Lane Length ft	Cap. Adj. \qquad	Prob. Block. \%
East: E Main													
Lane 1	530	2.0	1829	0.290	100	0.0	LOS A	0.0	0.0	Full	350	0.0	0.0
Approach	530	2.0		0.290		0.0	NA	0.0	0.0				
North: Broadway St													
Lane 1	40	2.0	231	0.173	100	23.8	LOS C	0.6	14.8	Short	100	0.0	NA
Lane 2	85	2.0	557	0.153	100	12.6	LOS B	0.6	15.6	Full	1600	0.0	0.0
Approach	125	2.0		0.173		16.2	LOS C	0.6	15.6				
West: E Main St													
Lane 1	545	2.0	1548	0.352	100	5.3	LOS A	1.8	45.1	Full	250	0.0	0.0
Approach	545	2.0		0.352		5.3	NA	1.8	45.1				
Intersection	1200	2.0		0.352		4.1	NA	1.8	45.1				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^1]
MOVEMENT SUMMARY

Site: 108 [EMainStBroadway]

E Main St at Cedar St (Stop control)
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: E Main											
2	T1	475	2.0	0.290	0.0	LOS A	0.0	0.0	0.00	0.00	37.8
12	R2	55	2.0	0.290	0.0	LOS A	0.0	0.0	0.00	0.00	36.9
Appro		530	2.0	0.290	0.0	NA	0.0	0.0	0.00	0.00	37.6
North: Broadway St											
3	L2	40	2.0	0.173	23.8	LOS C	0.6	14.8	0.80	0.80	20.1
18	R2	85	2.0	0.153	12.6	LOS B	0.6	15.6	0.57	0.52	23.6
Appro		125	2.0	0.173	16.2	LOS C	0.6	15.6	0.64	0.61	22.3
West: E Main St											
1	L2	120	2.0	0.352	9.1	LOS A	1.8	45.1	0.34	0.07	31.4
6	T1	425	2.0	0.352	4.3	LOS A	1.8	45.1	0.34	0.07	25.3
Approach		545	2.0	0.352	5.3	NA	1.8	45.1	0.34	0.07	27.7
All Vehicles		1200	2.0	0.352	4.1	NA	1.8	45.1	0.22	0.10	29.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)
ST0F Site: 108 [EMainStBroadway]
E Main St at Cedar St (Stop control)
Stop (Two-Way)

All Movement Classes

	East	North	West	Intersection
Vehicle Queue (\%ile)	0	16	45	45

Broadway St

Colour code based on Queue Storage Ratio
$\square[<0.6][0.6-0.7][0.7-0.8][0.8-0.9] \quad[0.9-1.0] \quad[>1.0]$

SITE LAYOUT

STor Site: 107 [EMainStCedarSt]

E Main St at Cedar St (Stop control)
Stop (Two-Way)
"

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:40:10 PM
Project: Z:ICounty\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes
Site: 107 [EMainStCedarSt]
E Main St at Cedar St (Stop control)
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
E: E Main	545	534	11
N: Cedar St	35	34	1
W: E Main St	460	451	9
Total	1040	1019	21

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:40:17 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 107 [EMainStCedarSt]

E Main St at Cedar St (Stop control)
Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	$\begin{array}{r} \text { 2ueue } \\ \text { Dist } \\ \text { ft } \end{array}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
East: E Main													
Lane 1	545	2.0	1847	0.295	100	0.0	LOS A	0.0	0.0	Full	1000	0.0	0.0
Approach	545	2.0		0.295		0.0	NA	0.0	0.0				
North: Cedar St													
Lane 1	35	2.0	294	0.119	100	18.9	LOS C	0.4	10.4	Full	1600	0.0	0.0
Approach	35	2.0		0.119		18.9	LOS C	0.4	10.4				
West: E Main St													
Lane 1	460	2.0	1753	0.262	100	4.1	LOS A	0.4	10.2	Full	350	0.0	0.0
Approach	460	2.0		0.262		4.1	NA	0.4	10.2				
Intersection	1040	2.0		0.295		2.5	NA	0.4	10.4				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:59:17 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 107 [EMainStCedarSt]

E Main St at Cedar St (Stop control)
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: E Main											
2	T1	520	2.0	0.295	0.0	LOS A	0.0	0.0	0.00	0.00	39.5
12	R2	25	2.0	0.295	0.0	LOS A	0.0	0.0	0.00	0.00	37.8
Appro		545	2.0	0.295	0.0	NA	0.0	0.0	0.00	0.00	39.4
North: Cedar St											
3	L2	25	2.0	0.119	22.9	LOS C	0.4	10.4	0.71	0.70	24.5
18	R2	10	2.0	0.119	9.0	LOS A	0.4	10.4	0.71	0.70	18.6
Appro		35	2.0	0.119	18.9	LOS C	0.4	10.4	0.71	0.70	22.8
West: E Main St											
1	L2	30	2.0	0.262	20.5	LOS C	0.4	10.2	0.11	0.01	32.9
6	T1	430	2.0	0.262	3.0	LOS A	0.4	10.2	0.11	0.01	33.6
Approach		460	2.0	0.262	4.1	NA	0.4	10.2	0.11	0.01	33.6
All Vehicles		1040	2.0	0.295	2.5	NA	0.4	10.4	0.07	0.03	35.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)
sTof Site: 107 [EMainStCedarSt]
E Main St at Cedar St (Stop control)
Stop (Two-Way)

All Movement Classes

	East	North	West	Intersection
Vehicle Queue (\%ile)	0	10	10	10

Cedar St

Colour code based on Queue Storage Ratio
$\square[<0.6][0.6-0.7][0.7-0.8][0.8-0.9] \quad[0.9-1.0] \quad[>1.0]$

SITE LAYOUT

STITF) Site: 110 [EMainStPineSt]
E Main St at Pine St (All-Way Stop Control)
Stop (All-Way)

N

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:46:36 PM
Project: Z:ICounty\Jackson\RogueRiver|TSP_Update_Analysisl08_Future_NoBuild_Analysis|20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 110 [EMainStPineSt]

E Main St at Pine St (All-Way Stop Control)
Stop (All-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Pine St	405	397	8
E: E Main St	405	397	8
N: Pine St	370	363	7
W: W Main St	285	279	6
Total	1465	1436	29

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:46:42 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 110 [EMainStPineSt]

E Main St at Pine St (All-Way Stop Control)
Stop (All-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	Queue Dist ft	Lane Config	Lane Length ft	$\begin{gathered} \text { Cap. } \\ \text { Adj. } \\ \% \end{gathered}$	Prob. Block. \%
South: Pine St													
Lane 1	405	2.0	449	0.901	100	49.9	LOSE	9.7	247.2	Full	400	0.0	0.0
Approach	405	2.0		0.901		49.9	LOS E	9.7	247.2				
East: E Main St													
Lane 1	85	2.0	265	0.320	100	15.7	LOS C	1.3	33.0	Full	400	0.0	$1.6{ }^{8}$
Lane 2	320	2.0	298	1.075	100	104.7	LOS F	15.2	384.9	Short (P)	100	0.0	NA
Approach	405	2.0		1.075		86.0	LOS F	15.2	384.9				
North: Pine St													
Lane 1	330	2.0	367	0.898	100	52.2	LOS F	9.1	231.8	Full	1600	0.0	0.0
Lane 2	40	2.0	326	0.123	100	9.7	LOSA	0.4	10.7	Short	100	0.0	NA
Approach	370	2.0		0.898		47.6	LOS E	9.1	231.8				
West: W Main St													
Lane 1	40	2.0	523	0.076	100	6.5	LOS A	0.2	6.1	Full	1600	0.0	0.0
Lane 2	245	2.0	720	0.340	100	8.5	LOS A	1.3	32.8	Short	180	0.0	NA
Approach	285	2.0		0.340		8.2	LOS A	1.3	32.8				
Intersection	1465	2.0		1.075		51.2	LOS F	15.2	384.9				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
8 Probability of Blockage has been set on the basis of a queue that overflows from a short lane.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Tuesday, September 26, 2017 2:03:37 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 110 [EMainStPineSt]
E Main St at Pine St (All-Way Stop Control)
Stop (All-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: Pine St											
3	L2	180	2.0	0.901	49.9	LOS E	9.7	247.2	1.00	2.21	15.0
8	T1	210	2.0	0.901	49.9	LOS E	9.7	247.2	1.00	2.21	15.0
18	R2	15	2.0	0.901	49.9	LOS E	9.7	247.2	1.00	2.21	8.0
Appr		405	2.0	0.901	49.9	LOS E	9.7	247.2	1.00	2.21	14.8
East: E Main St											
1	L2	85	2.0	0.320	15.7	LOS C	1.3	33.0	0.98	1.31	14.8
6	T1	145	2.0	1.075	104.7	LOS F	15.2	384.9	1.00	2.64	9.4
16	R2	175	2.0	1.075	104.7	LOS F	15.2	384.9	1.00	2.64	9.4
Appr		405	2.0	1.075	86.0	LOS F	15.2	384.9	1.00	2.36	9.8
North: Pine St											
7	L2	125	2.0	0.898	52.2	LOS F	9.1	231.8	1.00	2.12	14.6
4	T1	205	2.0	0.898	52.2	LOS F	9.1	231.8	1.00	2.12	14.6
14	R2	40	2.0	0.123	9.7	LOS A	0.4	10.7	0.92	1.18	30.1
Approach		370	2.0	0.898	47.6	LOS E	9.1	231.8	0.99	2.02	15.9
West: W Main St											
5	L2	40	2.0	0.076	6.5	LOS A	0.2	6.1	0.80	1.04	31.3
2	T1	110	2.0	0.340	8.5	LOS A	1.3	32.8	0.76	1.10	26.7
12	R2	135	2.0	0.340	8.5	LOS A	1.3	32.8	0.76	1.10	26.8
Appr		285	2.0	0.340	8.2	LOS A	1.3	32.8	0.77	1.09	27.6
All V	cles	1465	2.0	1.075	51.2	LOS F	15.2	384.9	0.95	1.99	14.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c>1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Tuesday, September 26, 2017 2:03:37 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)
STof Site: 110 [EMainStPineSt]
E Main St at Pine St (All-Way Stop Control)
Stop (All-Way)
All Movement Classes

	South	East	North	West	Intersection
Vehicle Queue (\%ile)	247	385	232	33	385

SITE LAYOUT

SToF Site: 106 [EMainStWardCkRd]

Three-way intersection with 2-lane major road (Stop control)
Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:37:20 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysisl08_Future_NoBuild_Analysisl20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes
Site: 106 [EMainStWardCkRd]
Three-way intersection with 2-lane major road (Stop control)
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
E: Major Road	235	230	5
N: Minor Road	75	74	2
W: Major Road	185	181	4
Total	495	485	10

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:37:22 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 106 [EMainStWardCkRd]

Three-way intersection with 2-lane major road (Stop control)
Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \\ \hline \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: Major Road													
Lane 1	235	2.0	1828	0.129	100	0.0	LOS A	0.0	0.0	Full	1600	0.0	0.0
Approach	235	2.0		0.129		0.0	NA	0.0	0.0				
North: Minor Road													
Lane 1	75	2.0	751	0.100	100	10.3	LOS B	0.4	10.6	Full	600	0.0	0.0
Approach	75	2.0		0.100		10.3	LOS B	0.4	10.6				
West: Major Road													
Lane 1	80	2.0	1282	0.062	100	3.3	LOS A	0.3	6.5	Short	100	0.0	NA
Lane 2	105	2.0	1863	0.056	100	0.0	LOS A	0.0	0.0	Full	1000	0.0	0.0
Approach	185	2.0		0.062		1.4	NA	0.3	6.5				
Intersection	495	2.0		0.129		2.1	NA	0.4	10.6				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^2]
MOVEMENT SUMMARY

Site: 106 [EMainStWardCkRd]

Three-way intersection with 2-lane major road (Stop control) Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: Major Road											
2	T1	210	2.0	0.129	0.0	LOS A	0.0	0.0	0.00	0.00	39.4
12	R2	25	2.0	0.129	0.0	LOS A	0.0	0.0	0.00	0.00	37.1
Appro		235	2.0	0.129	0.0	NA	0.0	0.0	0.00	0.00	39.2
North: Minor Road											
3	L2	10	2.0	0.100	21.1	LOS C	0.4	10.6	0.40	0.28	26.1
18	R2	65	2.0	0.100	8.7	LOS A	0.4	10.6	0.40	0.28	23.3
Appro		75	2.0	0.100	10.3	LOS B	0.4	10.6	0.40	0.28	23.7
West: Major Road											
1	L2	80	2.0	0.062	3.3	LOS A	0.3	6.5	0.32	0.18	28.0
6	T1	105	2.0	0.056	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
Approach		185	2.0	0.062	1.4	NA	0.3	6.5	0.14	0.08	35.2
All Vehicles		495	2.0	0.129	2.1	NA	0.4	10.6	0.11	0.07	35.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

QUEUE DISTANCE (\%ILE)

95\% Back of Queue Distance per lane (feet)

Site: 106 [EMainStWardCkRd]

Three-way intersection with 2-lane major road (Stop control)
Stop (Two-Way)

All Movement Classes

	East	North	West	Intersection
Vehicle Queue (\%ile)	0	11	6	11

Colour code based on Queue Storage Ratio
$\left.\left.\begin{array}{c}\square<0.6] \\ {[0.6-0.7]}\end{array}\right] 0.7-0.8\right][0.8-0.9][0.9-1.0] \quad[>1.0]$

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:58:26 PM

SITE LAYOUT

STITF Site: 109 [FoothillBIvdWEvansCreek]
Foothill Boulevard at W Evans Creek Road (Stop control)
Stop (Two-Way)

4 N

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:44:35 PM
Project: Z:ICounty\Jackson\RogueRiver|TSP_Update_Analysisl08_Future_NoBuild_Analysis|20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes
Site: 109 [FoothillBIvdWEvansCreek]
Foothill Boulevard at W Evans Creek Road (Stop control)
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
E: Foothill Boulevard	370	363	7
N: W Evans Creek Road	150	147	3
W: Foothill Boulevard	185	181	4
Total	705	691	14

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:44:44 PM
Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 109 [FoothillBIvdWEvansCreek]

Foothill Boulevard at W Evans Creek Road (Stop control) Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist ft	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
East: Foothill Boulevard													
Lane 1	370	2.0	1698	0.218	100	0.0	LOS A	0.0	0.0	Full	1600	0.0	0.0
Approach	370	2.0		0.218		0.0	NA	0.0	0.0				
North: W Evans Creek Road													
Lane 1	150	2.0	545	0.275	100	14.1	LOS B	1.2	31.3	Full	1600	0.0	0.0
Approach	150	2.0		0.275		14.1	LOS B	1.2	31.3				
West: Foothill Boulevard													
Lane 1	185	2.0	1678	0.110	100	3.0	LOS A	0.3	6.7	Full	1600	0.0	0.0
Approach	185	2.0		0.110		3.0	NA	0.3	6.7				
Intersection	705	2.0		0.275		3.8	NA	1.2	31.3				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:00:45 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 109 [FoothillBIvdWEvansCreek]

Foothill Boulevard at W Evans Creek Road (Stop control) Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
East: Foothill Boulevard											
2	T1	170	2.0	0.218	0.0	LOS A	0.0	0.0	0.00	0.00	37.8
12	R2	200	2.0	0.218	0.0	LOS A	0.0	0.0	0.00	0.00	36.4
Appro		370	2.0	0.218	0.0	NA	0.0	0.0	0.00	0.00	37.0
North: W Evans Creek Road											
3	L2	140	2.0	0.275	14.7	LOS B	1.2	31.3	0.58	0.57	28.0
18	R2	10	2.0	0.275	6.1	LOS A	1.2	31.3	0.58	0.57	28.2
Appro		150	2.0	0.275	14.1	LOS B	1.2	31.3	0.58	0.57	28.0
West: Foothill Boulevard											
1	L2	30	2.0	0.110	7.3	LOS A	0.3	6.7	0.16	0.02	35.7
6	T1	155	2.0	0.110	2.1	LOS A	0.3	6.7	0.16	0.02	37.4
Appro		185	2.0	0.110	3.0	NA	0.3	6.7	0.16	0.02	37.1
All Ve	cles	705	2.0	0.275	3.8	NA	1.2	31.3	0.17	0.13	34.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)
Site: 109 [FoothillBIvdWEvansCreek]
Foothill Boulevard at W Evans Creek Road (Stop control) Stop (Two-Way)

All Movement Classes

	East	North	West	Intersection
Vehicle Queue (\%ile)	0	31	7	31

W Evans Creek Road

Colour code based on Queue Storage Ratio

$\square[<0.6]$	$[0.6-0.7]$	$[0.7-0.8]$	$[0.8-0.9]$
$[0.9-1.0]$	$[>1.0]$		

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:00:45 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

SITE LAYOUT

STOF Site: 111 [NRiverRdClassickDr]

N River Road at Classick Drive (Stop control)
Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:48:39 PM
Project: Z:ICounty\Jackson\RogueRiver|TSP_Update_Analysisl08_Future_NoBuild_Analysis|20170926existing2040_AnalysisIntersections.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 111 [NRiverRdClassickDr]

N River Road at Classick Drive (Stop control)
Stop (Two-Way)

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: N River Road	235	230	5
N: N River Road	110	108	2
W: Classick Drive	50	49	1
Total	395	387	8

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Created: Thursday, October 05, 2017 3:48:41 PM
Project: Z:ICounty\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

LANE SUMMARY

Site: 111 [NRiverRdClassickDr]

N River Road at Classick Drive (Stop control)
Stop (Two-Way)

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	$\begin{gathered} \text { Lane } \\ \text { Util. } \\ \% \end{gathered}$	Average Delay sec	Level of Service	95\% Back Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \text { ft } \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: N River Road													
Lane 1	235	2.0	1796	0.131	100	3.0	LOS A	0.2	4.6	Full	1600	0.0	0.0
Approach	235	2.0		0.131		3.0	NA	0.2	4.6				
North: N River Road													
Lane 1	110	2.0	1848	0.060	100	0.0	LOS A	0.0	0.0	Full	600	0.0	0.0
Approach	110	2.0		0.060		0.0	NA	0.0	0.0				
West: Classick Drive													
Lane 1	50	2.0	768	0.065	100	10.0	LOS B	0.3	6.6	Full	1600	0.0	0.0
Approach	50	2.0		0.065		10.0	LOS B	0.3	6.6				
Intersection	395	2.0		0.131		3.0	NA	0.3	6.6				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:01:30 PM
Project: Z:ICounty\Jackson\RogueRiverlTSP_Update_Analysisl08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

MOVEMENT SUMMARY

Site: 111 [NRiverRdClassickDr]

N River Road at Classick Drive (Stop control)
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: N River Road											
1	L2	25	2.0	0.131	11.3	LOS B	0.2	4.6	0.06	0.00	35.9
6	T1	210	2.0	0.131	2.0	LOS A	0.2	4.6	0.06	0.00	36.6
Appro		235	2.0	0.131	3.0	NA	0.2	4.6	0.06	0.00	36.5
North: N River Road											
2	T1	105	2.0	0.060	0.0	LOS A	0.0	0.0	0.00	0.00	39.7
12	R2	5	2.0	0.060	0.0	LOS A	0.0	0.0	0.00	0.00	37.5
Appro		110	2.0	0.060	0.0	NA	0.0	0.0	0.00	0.00	39.6
West: Classick Drive											
3	L2	20	2.0	0.065	18.0	LOS C	0.3	6.6	0.30	0.18	26.1
18	R2	30	2.0	0.065	4.7	LOS A	0.3	6.6	0.30	0.18	29.5
Approach		50	2.0	0.065	10.0	LOS B	0.3	6.6	0.30	0.18	28.3
All Vehicles		395	2.0	0.131	3.0	NA	0.3	6.6	0.07	0.02	35.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

QUEUE DISTANCE (\%ILE)

Largest 95\% Back of Queue Distance for any lane used by vehicle movement (feet)
STOF Site: 111 [NRiverRdClassickDr]
N River Road at Classick Drive (Stop control)
Stop (Two-Way)

All Movement Classes

	South	North	West	Intersection
Vehicle Queue (\%ile)	5	0	7	7

Colour code based on Queue Storage Ratio

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:01:30 PM
Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

HCS2010 I5 Mainline \& Merge Diverge

HCS 2010: Freeway Merge and Diverge Segments Release 6.1

Phone:
Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Joseph Meek
Agency/Co.:	ODOT
Date performed:	10/2/2017
Analysis time period:	
Freeway/Dir of Travel:	NB
Junction:	Depot
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Description: Rogue River TSP
Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Diverge
2
70.0 mph

2416 vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
45.0 mph
$460 \quad \mathrm{vph}$
0 ft
ft
ft
Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp

No
vph
ft

Heavy vehicle adjustment, fHV
0.985
0.985

Driver population factor, fP 0.95 2717 0.95 517
\qquad

Capacity Checks \qquad

Flow Entering Diverge Influence Area

Actual 2717

Max Desirable 4400

Violation?
No
\qquad Level of Service Determination (if not F)
$\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{v}_{12}-0.009 \mathrm{~L}_{\mathrm{D}}=27.6 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence C
Speed Estimation \qquad
Intermediate speed variable,
Space mean speed in ramp influence area,
Space mean speed in outer lanes,
Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.1

Phone:
Fax:
E-mail:
Merge Analysis \qquad

Analyst:	Joseph Meek
Agency/Co.:	ODOT
Date performed:	10/3/2017
Analysis time period:	$3: 30-4: 30 \mathrm{pm}$
Freeway/Dir of Travel:	I5 NB
Junction:	Depot
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

\qquad Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge	
2	
70.0	mph
2408	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	45.0	mph
Volume on ramp	365	vph
Length of first accel/decel lane	0	ft
Length of second accel/decel lane		$f t$

Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp Distance to adjacent Ramp

No
vph
ft

Heavy vehicle adjustment, fHV

$$
0.985
$$

$$
0.985
$$

\qquad Estimation of V12 Merge Areas

Capacity Checks

| | Actual | Flow | Max Desirable |
| :---: | :---: | :---: | :---: | Level of Service Determination (if not F)

Density, $\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{v}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}=29.5 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D
Speed Estimation \qquad

Intermediate speed variable,	$M=0.407$	
Space mean speed in ramp influence area,	$S^{S}=58.6$	mph
Space mean speed in outer lanes,	$S^{R}=\mathrm{N} / \mathrm{A}$	mph
Space mean speed for all vehicles,	$\mathrm{S}^{0}=58.6$	mph

HCS 2010: Freeway Merge and Diverge Segments Release 6.1

Phone:
Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Joseph Meek
Agency/Co.:	ODOT
Date performed:	10/3/2017
Analysis time period:	$3: 30-4: 30 \mathrm{pm}$
Freeway/Dir of Travel:	I5 SB
Junction:	Depot
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Diverge
2
70.0 mph

2368 vph

Off Ramp Data \qquad

Heavy vehicle adjustment, fHV

$$
0.985
$$

$$
0.985
$$

\qquad

Capacity Checks \qquad

Flow Entering Diverge Influence Area Actual 2663

Max Desirable 4400

Violation?
No
v Level of Service Determination (if not F) \qquad
Density, $D=4.252+0.0086 \mathrm{v}-0.009 \mathrm{~L}=27.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
R 12 D
Level of service for ramp-freeway junction areas of influence C
Speed Estimation \qquad
Intermediate speed variable,
Space mean speed in ramp influence area,
Space mean speed in outer lanes,
Space mean speed for all vehicles,

$D=0.334$	
S	
$S=60.7$	mph
R	$=\mathrm{N} / \mathrm{A}$
S^{0}	mph
$S^{0}=60.7$	mph

HCS 2010: Freeway Merge and Diverge Segments Release 6.1

Phone:
Fax:
E-mail:
Merge Analysis \qquad

Analyst:	Joseph Meek
Agency/Co.:	ODOT
Date performed:	10/3/2017
Analysis time period:	$3: 30-4: 30 \mathrm{pm}$
Freeway/Dir of Travel:	I5 SB
Junction:	Depot
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

\qquad Freeway Data \qquad
Type of analysis
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

Merge	
2	
70.0	mph
2359	vph

On Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	45.0	mph
Volume on ramp	305	vph
Length of first accel/decel lane	0	ft
Length of second accel/decel lane		ft
	No	
Does adjacent ramp exist?		vph
Volume on adjacent Ramp		
Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		

Heavy vehicle adjustment, fHV

$$
0.985
$$

$$
0.985
$$

\qquad Estimation of V12 Merge Areas

Capacity Checks

Flow Entering Merge Influence Area
Actual
Max Desirable 4600

2979

Violation?
No
v R12

$$
326
$$

pcph
\qquad
$12=\underset{\mathrm{F}}{(\mathrm{P}} \underset{\mathrm{FM}}{ })=2653 \mathrm{pc} / \mathrm{h}$

No
No
(Equation 13-15, 13-16, 13-18, or 13-19)

	Actual	Max	Mesterirable

Level of Service Determination (if not F)
Density, $\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{v}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}=28.6 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intermediate speed variable,	$M=0.398$	
Space mean speed in ramp influence area,	$S^{S}=58.9$	mph
Space mean speed in outer lanes,	$S^{R}=\mathrm{N} / \mathrm{A}$	mph
Space mean speed for all vehicles,	$S_{0}=58.9$	mph

Phone:
Fax:
E-mail:
Operational Analysis

Analyst:	Joseph Meek
Agency or Company:	ODOT
Date Performed:	$10 / 4 / 2017$
Analysis Time Period:	$3: 30-4: 30 p m$
Freeway/Direction:	I5 NB
From/To:	north of interchange
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Flow Inputs and Adjustments \qquad

Volume, V	2359	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	621	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	-	mi
Grade	-	
Segment length	1.5	
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-side lateral clearance
Total ramp density, TRD
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
TRD adjustment
Free-flow speed, FFS
$75.4 \mathrm{mi} / \mathrm{h}$
0.0 mi / h
12.0
6.0
0.66

2
Base
0.0
2.3
73.1
.
ft
ft
ramps/mi
$0.0 \mathrm{mi} / \mathrm{h}$
mi/h
mi/h

LOS and Performance Measures \qquad

Flow rate, vp
Free-flow speed, FFS
Average passenger-car speed, S
Number of lanes, N
Density, D
Level of service, LOS

1327	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
73.1	mi / h
73.8	mi / h
2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
$18.0-$	

13.1
73.8
18.0-
pc/mi/ln
$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
mi / h
mi / h
pc/mi/ln

B

Operational Analysis \qquad

Analyst:	Joseph Meek
Agency or Company:	ODOT
Date Performed:	$10 / 3 / 2017$
Analysis Time Period:	$3: 30-4: 30 \mathrm{pm}$
Freeway/Direction:	
From/To:	between interchange ramps
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Flow Inputs and Adjustments \qquad

Volume, V	1994	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	525	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	-	mi
Grade	-	
Segment length	1.5	
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-side lateral clearance
Total ramp density, TRD
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
TRD adjustment
Free-flow speed, FFS
12.0
6.0
0.50

2
Base
75.4
0.0
0.0
1.8
73.6

LOS and Performance Measures \qquad

Flow rate, vp
Free-flow speed, FFS
Average passenger-car speed, S
Number of lanes, N
Density, D
Level of service, LOS

1121	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
73.6	mi / h
74.8	mi / h
2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
15.0	

15.0
pc/mi/ln

B
ft
ft
ramps/mi
mi / h
mi / h
mi / h
mi/h
mi / h

Phone:
Fax:
E-mail:
Operational Analysis

Analyst:	Joseph Meek
Agency or Company:	ODOT
Date Performed:	$10 / 4 / 2017$
Analysis Time Period:	$3: 30-4: 30 p m$
Freeway/Direction:	I5 NB
From/To:	south of interchange
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Flow Inputs and Adjustments \qquad

Volume, V	1979	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	521	$\%$
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	-	mi
Grade	-	
Segment length	1.5	
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-side lateral clearance
Total ramp density, TRD
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
TRD adjustment
Free-flow speed, FFS
$75.4 \mathrm{mi} / \mathrm{h}$
0.0 mi / h
12.0
6.0
0.66

2
Base
0.0
2.3
73.1
. 6
ft
ft
ramps/mi
$0.0 \mathrm{mi} / \mathrm{h}$
mi/h
mi/h

LOS and Performance Measures \qquad

Flow rate, vp
Free-flow speed, FFS
Average passenger-car speed, S
Number of lanes, N
Density, D
Level of service, LOS

1113	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
73.1	mi / h
74.9	mi / h
2	
14.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

14.9

B
$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
mi/h
mi / h
pc/mi/ln

Phone:
Fax:
E-mail:
Operational Analysis

Analyst:	Joseph Meek
Agency or Company:	ODOT
Date Performed:	$10 / 4 / 2017$
Analysis Time Period:	$3: 30-4: 30 p m$
Freeway/Direction:	I5 SB
From/To:	north of interchange
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Flow Inputs and Adjustments \qquad

Volume, V	2416	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	636	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	-	$\%$
Grade	-	mi
Segment length	1.5	
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Heavy vehicle adjustment, fHV	0.95	

Speed Inputs and Adjustments \qquad

Lane width
Right-side lateral clearance
Total ramp density, TRD
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
TRD adjustment
Free-flow speed, FFS
$0.0 \quad \mathrm{mi} / \mathrm{h}$
12.0
6.0
0.66

2
Base
75.4
0.0
2.3
73.1
ft
ft
ramps/mi
mi/h
mi/h
mi / h

LOS and Performance Measures \qquad

Flow rate, vp
Free-flow speed, FFS
Average passenger-car speed, S
Number of lanes, N
Density, D
Level of service, LOS

1359	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
73.1	mi / h
73.6	mi / h
2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
18.5	

1359
73.6

2
18.5

C
$\mathrm{pc} / \mathrm{h} / \ln$
mi/h
mi / h
pc/mi/ln

Phone:
Fax:
E-mail:
Operational Analysis

Analyst:	Joseph Meek
Agency or Company:	ODOT
Date Performed:	$10 / 4 / 2017$
Analysis Time Period:	$3: 30-4: 30 p m$
Freeway/Direction:	I5 SB
From/To:	south of interchange
Jurisdiction:	ODOT
Analysis Year:	2040
Description: Rogue River TSP	

Flow Inputs and Adjustments \qquad

Volume, V	2408	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	634	v
Trucks and buses	3	$\%$
Recreational vehicles	0	Level
Terrain type:	-	mi
Grade	-	
Segment length	1.5	
Trucks and buses PCE, ET	1.2	
Recreational vehicle PCE, ER	0.985	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments \qquad

Lane width
Right-side lateral clearance
Total ramp density, TRD
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fLC
TRD adjustment
Free-flow speed, FFS
$75.4 \mathrm{mi} / \mathrm{h}$
0.0 mi / h
12.0
6.0
0.66

2
Base
0.0
2.3
73.1
. 6
ft
ft
ramps/mi
$0.0 \mathrm{mi} / \mathrm{h}$
mi/h
mi/h

LOS and Performance Measures \qquad

Flow rate, vp
Free-flow speed, FFS
Average passenger-car speed, S
Number of lanes, N
Density, D
Level of service, LOS

1354	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
73.1	mi / h
73.6	mi / h
2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
18.4	

m/h
i/h
pc/mi/ln

Preliminary Signal Warrants

${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^3]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

Oregon Department of Transportation Transportation Development Branch Transportation Planning Analysis Unit					
Preliminary Traffic Signal Warrant Analysis ${ }^{1}$					
Major Street: Depot St			Minor Street: Pine St		
Project:	Rogue River TSP		City/County: Jackson		
Year: 2040			Alternative: existing		
Preliminary Signal Warrant Volumes					
Number of Approach lanes		ADT on major street approaching from both directions		ADT on minor street, highest approaching volume	
Major	Minor	Percent of standard warrants		Percent of standard warrants	
Street	Street	100	70	100	70
Case A: Minimum Vehicular Traffic					
1	1	8850	6200	2650	1850
2 or more	1	10600	7400	2650	1850
2 or more	2 or more	10600	7400	3550	2500
1	2 or more	8850	6200	3550	2500
Case B: Interruption of Continuous Traffic					
1	1	13300	9300	1350	950
2 or more	1	15900	11100	1350	950
2 or more	2 or more	15900	11100	1750	1250
1	2 or more	13300	9300	1750	1250
\mathbf{X}					
70 percent of standard warrants ${ }^{2}$					
Preliminary Signal Warrant Calculation					
	Street	Number of Lanes	Warrant Volumes	Approach Volumes	Warrant Met
$\begin{gathered} \hline \text { Case } \\ \text { A } \end{gathered}$	Major	1	8850	11050	N
	Minor	1	2650	1050	
$\begin{gathered} \hline \text { Case } \\ \text { B } \end{gathered}$	Major	1	13300	11050	N
	Minor	1	1350	1050	
Analyst and Date:	Reviewer and Date:				

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^4]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^5]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^6]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

Oregon Department of Transportation

Transportation Development Branch

Transportation Planning Analysis Unit
Preliminary Traffic Signal Warrant Analysis ${ }^{1}$

Major Street:	N River	Minor Street: Classick
Project:	Rogue River TSP	City/County: Jackson
Year:	2040	Alternative: \quad existing

Preliminary Signal Warrant Volumes						
Number of Approach lanes		ADT on major street approaching from both directions	ADT on minor street, highest approaching volume			
Major Street	Minor Street	100	70	100	70	

Case A: Minimum Vehicular Traffic					
1	1	8850	6200	2650	1850
2 or more	1	10600	7400	2650	1850
2 or more	2 or more	10600	7400	3550	2500
1	2 or more	8850	6200	3550	2500

Case B: Interruption of Continuous Traffic

1	1	13300	9300	1350	950
2 or more	1	15900	11100	1350	950
2 or more	2 or more	15900	11100	1750	1250
1	2 or more	13300	9300	1750	1250
\mathbf{X}	100 percent of standard warrants				
70 percent of standard warrants ${ }^{2}$					

Preliminary Signal Warrant Calculation

	Street	Number of Lanes	Warrant Volumes	Approach Volumes	Warrant Met
Case	Major	1	8850	3450	N
A	Minor	1	2650	200	
Case	Major	1	13300	3450	N
B	Minor	1	1350	200	
Analyst and Date:			Reviewer and Date:		

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^7]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

Oregon Department of Transportation Transportation Development Branch Transportation Planning Analysis Unit					
Preliminary Traffic Signal Warrant Analysis ${ }^{1}$					
Major Street: Main			Minor Street: Depot		
Project:	Rogue River TSP		City/County: Jackson		
Year:	2040		Alternative: existing		
Preliminary Signal Warrant Volumes					
Number of Approach lanes		ADT on major street approaching from both directions		ADT on minor street, highest approaching volume	
Major	Minor	Percent of standard warrants		Percent of standard warrants	
Street	Street	100	70	100	70
Case A: Minimum Vehicular Traffic					
1	1	8850	6200	2650	1850
2 or more	1	10600	7400	2650	1850
2 or more	2 or more	10600	7400	3550	2500
1	2 or more	8850	6200	3550	2500
Case B: Interruption of Continuous Traffic					
1	1	13300	9300	1350	950
2 or more	1	15900	11100	1350	950
2 or more	2 or more	15900	11100	1750	1250
1	2 or more	13300	9300	1750	1250
X	100 percent of standard warrants				
70 percent of standard warrants ${ }^{2}$					
Preliminary Signal Warrant Calculation					
	Street	Number of Lanes	Warrant Volumes	Approach Volumes	Warrant Met
$\begin{gathered} \text { Case } \\ \text { A } \end{gathered}$	Major	1	8850	8050	N
	Minor	1	2650	1151	
$\begin{gathered} \hline \text { Case } \\ \text { B } \end{gathered}$	Major	1	13300	8050	N
	Minor	1	1350	1151	
Analyst and Date:	Reviewer and Date:				

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^8]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^9]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^10]
${ }^{1}$ Capacity obtained from unsignalized intersection analysis
For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.
Last Updated: February 2009

Oregon Department of Transportation

Transportation Development Branch

Transportation Planning Analysis Unit
Preliminary Traffic Signal Warrant Analysis ${ }^{1}$

Major Street:	Pine St	Minor Street: Main St
Project:	Rogue River TSP	City/County: Jackson
Year:	2040	Alternative: existing

Preliminary Signal Warrant Volumes						
Number of Approach lanes		ADT on major street approaching from both directions	ADT on minor street, highest approaching volume			
Major Street	Minor	Ptreet	100	70	Percent of standard warrants vercent of standard warrants	

Case A: Minimum Vehicular Traffic					
1	1	8850	6200	2650	1850
2 or more	1	10600	7400	2650	1850
2 or more	2 or more	10600	7400	3550	2500
1	2 or more	8850	6200	3550	2500

Case B: Interruption of Continuous Traffic

1	1	13300	9300	1350	950
2 or more	1	15900	11100	1350	950
2 or more	2 or more	15900	11100	1750	1250
1	2 or more	13300	9300	1750	1250
\mathbf{X}	100 percent of standard warrants				
70 percent of standard warrants ${ }^{2}$					

Preliminary Signal Warrant Calculation

	Street	Number of Lanes	Warrant Volumes	Approach Volumes	Warrant Met
Case A	Major	1	8850	7750	N
	Minor	1	2650	2300	
	Major	1	13300	7750	2300

${ }^{1}$ Meeting preliminary signal warrants does not guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

[^11]
[^0]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:57:48 PM
 Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

[^1]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 2:00:00 PM
 Project: Z:\County\Jackson\RogueRiver\TSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

[^2]: SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: OREGON DEPARTMENT OF TRANSPORTATION | Processed: Thursday, October 05, 2017 1:58:26 PM
 Project: Z:\County\Jackson\RogueRiverlTSP_Update_Analysis\08_Future_NoBuild_Analysis\20170926existing2040_AnalysisIntersections.sip7

[^3]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^4]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^5]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^6]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^7]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^8]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^9]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^10]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

[^11]: ${ }^{2}$ Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.

